Photocatalytic Decomposition of Propyzamide Using TiO₂ Supported on Activated Carbon

Hiroyuki UCHIDA, † Shigeyoshi ITOH, and Hiroshi YONEYAMA*
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Yamada-oka 2-1, Suita, Osaka 565

Utility of activated carbon adsorbate as a support for TiO₂ photocatalysts was demonstrated for photomineralization of propyzamide, a typical herbicide, in dilute aqueous solution. High adsorptive activity of the activated carbon support enables the organic pollutant to concentrate around the loaded TiO₂, resulting in a high photocatalytic degradation rate.

Recently photochemical processes using semiconductor photocatalysts have been intensively studied with purposes of detoxification of organic and inorganic pollutants in water. A lot of studies have shown that illumination of semiconductor powders such as TiO₂ suspended in aqueous solutions containing organic compounds and oxygen induces oxidative decomposition of the organic compounds, accompanied by reduction of dissolved oxygen. It is believed that the first step of the oxidative decomposition is oxidation of the oganic molecules with hydroxyl radicals produced on the photocatalyst surfaces. Then, adsorbability of the organic molecules on TiO₂ is an important factor to determine its decomposition kinetics. In cases of dilute pollutants of ppm levels, it usually takes a long time to complete their decomposition. In order to perform a rapid and efficient decomposition under such dilute conditions, it may be effective to load photocatalysts on suitable adsorbents to concentrate the pollutants around the photocatalyst. Minero et al. examined the effect of the addition of Al₂O₃ and SiO₂ as inert supports to TiO₂ photocatalyst suspensions for photodecompositions of several kinds of organic compounds. However, they observed that the decomposition rates were

little affected by the location of the organic compounds, whether in solution, on the photocatalyst or on these inert supports.

We have obtained very promising results on the use of activated carbon as a support for TiO₂ in photocatalytic degradation of 3,5-dichloro-N-(1,1-dimethyl-2-propynyl) benzamide (Propyzamide), a typical herbicide widely used in golf links. The purpose of this

$$\begin{array}{c|c} Cl & CH_3 \\ \hline & C-NH-C-C\equiv CH \\ Cl & CH_3 \\ \hline & Propyzamide \\ \end{array}$$

[†]Present address: Department of Applied Chemistry and Biotechnology, Faculty of Enginerring, Yamanashi University, Takeda 4–3, Kofu 400.

paper is to describe the first finding of the usefulness of the inert support for semiconductor photocatalyst.

Microcrystalline TiO_2 colloids were prepared by dropwisely adding 2.58 cm³ of titanium tetraiso-propoxide to 7.74 cm³ of 1 M (1 M = 1 mol dm⁻³) HNO₃ aqueous solution under vigorous stirring at room temperature. The resulting slurry was peptized by further stirring for 2 h to give a clear TiO_2 sol. 50 cm³ of water was added to the sol and pH was adjusted to 3 by adding 1 M NaOH, resulting in a turbid TiO_2 colloid. Then a desired amount of activated carbon particles (AC) (Wako Pure Chemicals) was added to the colloid, followed by stirring for 1 h to attach TiO_2 particles on the activated carbon. After repetition of centrifuge and washing with distilled water more than five times until the solutuion pH became 6 - 7, TiO_2 -loaded activated carbon (TiO_2 /AC) was vacuum dried. Finally the obtained powders were heated at 300 °C in air for 1 h. The photocatalyst thus prepared will be denoted as TiO_2 /AC. We prepared three kinds of TiO_2 /AC with different TiO_2 loadings of 33, 56, and 80 wt%, which were determined by a spectrophotometric method using Tiron as a complexing agent. Besides the TiO_2 /AC, naked TiO_2 particles were prepared as a reference using the similar hydrolysis procedures of titaniumtetraisopropoxide.

The naked ${\rm TiO}_2$ powder showed broad X-ray diffraction patterns assigned to anatase form. Its mean diameter determined by dynamic light scattering was 0.26 μ m and the BET surface area was 139 m² g⁻¹. The BET surface area and average particle size of the original active carbon were 749 m² g⁻¹ and 5 μ m, respectively. Scanning electron microscopy and energy dispersive X-ray microanalysis of ${\rm TiO}_2/{\rm AC}$ indicated that fine ${\rm TiO}_2$ particles of ca. 0.2 μ m or their aggregates distributed uniformly over the activated carbon surfaces. The BET surface area of ${\rm TiO}_2/{\rm AC}$ was 798, 556, and 242 m² g⁻¹ for 33, 56 and 80 wt% ${\rm TiO}_2$ loadings.

Photocatalytic degradation of propyzamide was carried out using a pyrex glass reacion cell. 10 mg of the photocatalyst powder (TiO₂/AC or naked TiO₂) was suspended in 10 cm³ of air-saturated aqueous solution containing 7.8 ppm, i.e., 30.5 μM propyzamide. Under magnetically stirring, the cell was illuminated with a 400 W Xenon lamp at irradiance of 135 mW cm⁻². After a given time of illumination, the photocatalyst was removed by centrifuge, and the solution was filtered off with a 0.2 μm pore size membrane filter. Changes in the concentration of propyzamide were monitored by measuring the optical absorption spectra of the filtrates with use of a photodiode array spectrophotometer. As the decomposition products, Cl⁻ ions and dissolved CO₂ were analyzed by a Cl⁻ selective electrode (Horiba 8002–06T) and a CO₂ electrode (TOA CE–235), respectively.

Figure 1 shows the time course of Cl^- production in the photocatalytic degradation of propyzamide over various amounts of naked TiO_2 . Almost the same production rate of Cl^- was obtained with the use of 1.0 and 2.0 g dm⁻³ of the photocatalyst, though a lower production rate was seen for 0.5 g dm⁻³. In this figure, the degree of the release of Cl^- ions from propyzamide is also given as the percentage of decomposition. The release of Cl^- ions completed within 2 h of illumination for 1 g dm⁻³ of the suspended TiO_2 . In contrast the evolution of CO_2 from propyzamide took a long time for its completion. As shown in Fig. 2, a long induction period was needed before the CO_2 evolution took place. The percentage of the decomposition to CO_2 given in Fig. 2 was obtained by assuming that twelve CO_2 molecules evolved from one propyzamide molecule. As shown in the figure, the decomposition of propyzamide into CO_2 was less than 30 % even after 6h illumination of 1g dm⁻³ naked TiO_2 photocatalyst suspension. The results given in Figs. 1 and 2 show that the complete mineralization of propyzamide into CO_2 takes a long time, whereas Cl-C bonds are easily cleaved.

To evaluate abilities for popyzamide adsorption of the naked TiO₂ and activated carbon, they were suspended in 7.8 ppm propyzamide solution so as to give 1 gdm⁻³, followed by magnetically stirring for 1 h in

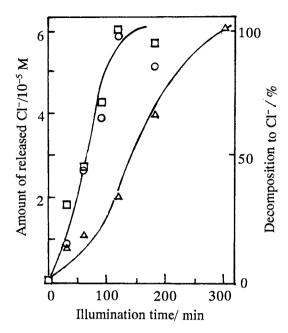


Fig. 1. Time course of Cl⁻ ion production in photodegradation of 30.5 μ M propyzamide over different amounts of naked TiO₂. The amount of TiO₂ suspended: (\triangle) 0.5, (\bigcirc) 1.0, and (\square) 2.0 g dm⁻³.

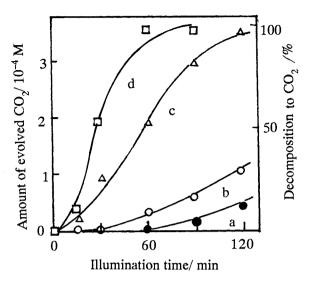


Fig. 2. Time course of CO_2 production in photodegradation of 30.5 μ M propyzamide over (a) naked TiO_2 , and (b)– (d) TiO_2 /AC. The amount of loaded TiO_2 : (b) 33, (c) 56, and (d) 80 wt%. The amount of the photocatalyst suspended was 1 g dm⁻³.

the dark. After filtration, the concentration of propyzamide in the filtrates was determined by measuring the absorbance at 208 nm. It was found that as small as 13% of propyzamide in solution adsorbed on the naked TiO₂, while 87.6% was removed by the activted carbon. The observed very slow degradation rate of propyzamide at the naked TiO₂ may result from such low adsorbability.

It was found by blank tests that a detectable amount of CO_2 evolved with illumination of TiO_2/AC suspension in the absence of propyzamide. The CO_2 evolution in that case is due probably to decomposition of trace amounts of organic impurities adsorbed on the activated carbon. In the results given in Fig. 2, the amount of CO_2 obtained in the balnk test is subtracted. It is noticed from Fig. 2 that the induction period for CO_2 evolution was shortened and the CO_2 evolution rate was dramatically increased by increasing the amount of loaded TiO_2 . When 80 wt%-loaded TiO_2/AC was used, the degradation of propyzamide to CO_2 completed with illumination for about 1 h. A series of control experiments showed that such an efficient minerarization was achieved only with the use of TiO_2/AC .

All the photodegradation experiments described above were carried out without regulating the cell temperature. However, illumination of TiO₂/AC suspensions raised the cell temperature up to 40 °C by absorbing IR lights in the activated carbon support, while no remarkable rise of temperature was observed for the use of the naked TiO₂ suspension. To examine the effect of temperature on the photodegradation rate, the CO₂ evolution was measured at two different temperatures of 25 °C and 40 °C. The experiments were carried out by circulating water of regulated temperature through a quartz cell in which the reaction cell was immersed. It was found that 40 °C gave a higher evolution rate of CO₂ than 25 °C. However, the activity difference at 40 °C between the naked TiO₂ and 80 wt%-loaded TiO₂/AC was smaller than that at 25 °C; The activity of the

 ${
m TiO_2/AC}$ was 6.5 times as great as that of the naked ${
m TiO_2}$ at 25 °C, while a 4.3 times activity difference was obtained at 40 °C. This seems to suggest that the effect of the activated carbon supports must appear more remarkably at lower temperatures.

To demonstrate further the utility of the activated carbon support for TiO₂ loading, photodecomposition of propyzamide to CO₂ was studied at 25 °C using the naked TiO₂ in the presence of dispersed activated carbon. As shown in Fig. 3, the reaction rate of the naked TiO₂ was increased by introducing the active carbon into the TiO₂ suspension, but the enhanement was not so great as that obtained at the 80 wt%-loaded TiO₂/AC, suggesting that activated carbon worked well as an effective adsorbate to concentrate propyzamide around the loaded TiO₂ photocatalysts. The adsorbed propyzamide seems to be supplied to the loaded TiO₂ photocatalyst mostly by surface diffusion. 5) It is believed that the complete photodecomposition of propyzamide is achieved by several consecutive

Fig. 3. Amount of $\rm CO_2$ produced by illumination for 1 h at 25 °C and 40 °C. $\rm TiO_2/AC$: 80 wt% loaded $\rm TiO_2$ on AC, $\rm TiO_2$ + AC: mixture of 80 wt% $\rm TiO_2$ and AC. The amount of the catalyst suspended was 1 g dm⁻³ including AC. Illumination time: 1 h.

reactions, as in oxidative decomposition of other organic compounds.⁶⁾ Studies to elucidate this point are currently in progress in our laboratory. It is concluded that the use of adsorbates as supports for semiconductor photocatalysts is very useful to enhance the apparent activities of the photocatalysts. The results shown here may open a new route for designing semiconductor photocatalysts for detoxification of pollutants of very dilute concentrations.

This work was supported by Chemical Materials Research and Development Foundations.

Refeences

- 1) D. Ollis, E. Pelizetti, and N. Sherpone, *Envron. Sci. Technol.*, **25**, 1523 (1991); M. A. Fox, *Chemtech.*, **1992**, 680, and references cited therein.
- 2) C. D. Jaeger and A. J. Bard, J. Phys. Chem., 83, 3146 (1979).
- 3) R. W. Matthews, J. Phys. Chem., 91, 3328 (1987).
- 4) C. S. Turch and D. F. Ollis, J. Ctal., 122, 178 (1990).
- 5) C. Minero, F. Catozzo, and E. Pelizetti, Langmuir, 8, 481 (1992).
- 6) For example: K. Okamoto, Y. Yamamoto, Y. Tanaka, and A. Itaya, *Bull. Chem. Soc. Jpn.*, **58**, 2015 (1985); H. Hidaka, J. Zhao, E. Pelizzetti, and N. Sherpone, *J. Phys. Chem.*, **96**, 2226 (1992).

(Received July 28, 1993)